ADVANCED STRENGTH OF MATERIALS						
Course	19ME4501B	Year	III	Semester	Ι	
Code						
Course	Program	Branch	ME	Course Type	Theory	
Category:	Elective				Theory	
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil	
Continuous	30	Semester	70	Total Marks:	100	
Evaluation:		End				
		Evaluation:				

ADVANCED STRENGTH OF MATERIALS

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Calculate deflections in fixed and continuous beams.	L3		
CO2	Determine the stresses in thick cylinders.	L3		
CO3	Analyse the curved beams for stresses with different cross sections.	L4		
CO4	Calculate the stresses in rotating disks.	L3		
CO5	Determine the Strain Energy under various loading conditions.	L3		

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1								2	3	1
CO2	3	3	3	1								2	3	1
CO3	3	3	3	1								2	3	1
CO4	3	3	3	1								2	3	1
CO5	3	3	3	1								2	3	1

	Course Content	Mapp ed CO s
UNIT-1	Fixed beams and continuous beams: Introduction, analysis of fixed beams by Macaulay's method Clapeyron's theorem of three moments, Beams with constant moments of inertia.	CO1
UNIT-2	Thick cylinders: Introduction, Stresses in thick Cylindrical shell(Lame's theory), Radial Deflection, Stresses in Compound Cylinders.	CO 2
UNIT-3	Curved beams: Stresses in Beams of small and large initial curvature, The Winkler-Bach theory, Assumptions for stresses in the bending of curved bars, Stresses in Crane Hook and C-Clamp with Rectangular, circular and trapezoidal cross sections.	CO3
UNIT-4	Centrifugal Stresses : Introduction, Rotating Ring, Rotating Disc, Rotating Disc of uniform strength.	CO4
UNIT-5	Strain Energy : Resilience, Proof Resilience, Strain energy stored in a body when the load is applied gradually, Load is applied suddenly, Load is applied with impact, Strain energy stored in a body due to shear stress.	CO5

Learning Resources						
Text	1. James M. Gere, "Mechanics of Materials", 7th edition, Cengage learning India,					
Books:	2010.					
	2. S.S. Rattan, "Strength of Materials", 2nd edition, Tata Mc-Graw Hill Private					
	Limited, New Delhi, 2012.					
	S. B. Junarkar, Mechanics of Structures, Charotar Publishers, 2010					
Reference	1. Adarsh Swaroop, "Mechanics of Materials" 1 st edition, New Age International					
Books:	Pvt. Ltd, 2012.					
	2. Popov, Mechanics of Solids, 2/e, New Pearson Education, 2015.					
E-	https://nptel.ac.in/courses/112/101/112101095/					
Resources						
& other						
digital						
Material:						